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Abstract

The centroidal axis of a member that is curved in space is generally a space curve. The curvature of the space curve is
not necessarily in the direction of either of the principal axes of the cross-section, but can be resolved into components
in the directions of both of these principal axes. Hence, a member curved in space is primarily subjected to combined
compressive, biaxial bending and torsional actions under vertical (or gravity) loading. In addition, warping actions in
particular may occur in curved members with an open thin-walled cross-section, and as the deformations increase, sig-
nificant interactions of the compressive, biaxial bending and torsional actions occur and profoundly nonlinear defor-
mations are developed in the nonlinear range of structural response. This makes the nonlinear behaviour of a member
curved in space very complicated, making it difficult to obtain a consistent differential equation of equilibrium for the
nonlinear analysis of members curved in space. In addition, because torsion is one of the primary actions in these mem-
bers, when the torsional deformations become large, the Wagner effects including both Wagner moment and the con-
jugate Wagner strain terms are increasingly significant and need to be included in the nonlinear analysis. This paper
takes advantage of the merits of so-called ‘‘geometrically exact beam theory’’ and the weak form formulation of the
differential equations of equilibrium in beam theory, and it develops consistent differential equations of equilibrium
for the nonlinear elastic analysis of members curved in space with warping and Wagner effects. The application of
the nonlinear differential equations of equilibrium to various problems is illustrated.
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1. Introduction

Curved members are used very widely in engineering structures (Fig. 1), yet their generic analysis is little
understood. When a member is curved in elevation (an arch) or is curved in plan, its centroidal axis is a
plane curve and its curvature is usually in the direction of one of the principal axes of the cross-section.
However, when a member is more arbitrarily curved in space, its centroidal axis is a space curve rather than
a plane curve. The curvature of the space curve is not necessarily in the direction of either principal axis of
the cross-section, but it can be resolved into components in the directions of both principal axes. Hence, the
member curved in space is primarily subjected to combined compressive, biaxial bending and torsional ac-
tions under vertical loading. In addition, warping actions in particular may occur in curved members with
an open thin-walled cross-section. The nonlinear behaviour of a member curved in space is even more com-
plicated because significant interactions of these compressive, biaxial bending and torsional actions are
developed in the nonlinear range of structural response, and because of this complication studies of the
nonlinear analysis of members that are curved in space appear to be very limited in the open literature
and concentrate on the theoretical aspects. Reissner (1981) reported a study on the finite deformation of
members curved in space. Crisfield and Jelenić (1999) discussed the objectivity of strain measures based
on geometrically exact three-dimensional theory, while Atluri et al. (2001) developed a consistent theory
of finite stretches and rotations in members curved in space. However, nonlinear differential equations
of equilibrium for members curved in space including the effects of warping and Wagner effects (Wagner,
1936) have rarely been reported. Yoda et al. (1978, 1980) and Hirashima et al. (1979) developed a finite
displacement theory of naturally curved and twisted thin-walled members and took warping and Wagner
strain terms into account in their strain expression. It is known that the Wagner effects include both the
Wagner terms in the finite strains and the corresponding Wagner moment (Pi and Trahair, 1995; Pi and
Bradford, 2000). To account for the Wagner effects properly, both the Wagner terms in the finite strains
and the corresponding Wagner moment need to be considered. However, the significance of the Wagner
strain terms and the Wagner moment in the large twist torsional analysis has not widely been recognised,
although the theoretical study of Yoda et al. (1978) included both the Wagner strain terms and the Wagner
moment in their formulation. As pointed out by Iura and Hirashima (1985), in the early studies of naturally
curved and twisted members, the second order terms were neglected in the constitutive equations for twist-
ing moment. Pi and Trahair (1995) developed a nonlinear torsional theory for straight members and found
Projection in plan

Projection in elevation

Fig. 1. Member curved in space and its projections in plan and in elevation.
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that the Wagner terms in the finite strains and the corresponding Wagner moment play an important part
in the large twist rotation analysis of beams subjected to pure torsional action, and that in order to consider
the Wagner effects correctly, both the Wagner terms in the finite strains and the corresponding Wagner mo-
ment have to be included in the nonlinear analysis as shown in Fig. 2. It can be seen from Fig. 2 that with-
out Wagner moment and Wagner strain terms, quite soft large deformation behaviour is predicted (Farwell
and Galambos, 1969; Pi and Trahair, 1995). Without Wagner terms in the finite strain or without the cor-
responding Wagner moment, the Wagner effects cannot be accounted for correctly. It is also worth pointing
out that without the Wagner moment, even the flexural–torsional buckling load of circular arches under
uniform compression cannot be predicted correctly (Pi and Bradford, 2002).

So-called ‘‘geometrically exact beam theory’’ derived directly from the resultant forms of the differential
equations of equilibrium has been used extensively for the geometric nonlinear analysis of beams (Reissner,
1973, 1981; Simo and Vu-Quoc, 1986; Crisfield, 1990; Ibrahimbegivić et al., 1995; Jelenić et al., 1995; Cris-
field and Jelenić, 1999; Atluri et al., 2001). The incorporation of the shear strains that are needed to model
‘‘Timoshenko beams’’ is easy with this method and it is also convenient for the use of various mathematical
tools such as vector and tensor analysis, differential geometry, and geometric (Clifford) algebra (McRobie
and Lasenby, 1999) in the formulation. The differential equations of equilibrium are written in terms of
stress resultants, and constitutive models are usually expressed in terms of relationships between the stress
resultants and three ‘‘direct’’ strains and three curvatures. Because it is difficult to include the warping
strain and its corresponding stress resultant in geometrically exact beam theory, most of these studies have
not considered warping in detail except that of Simo and Vu-Quoc (1991) who treated the warping defor-
mation by including the warping amplitude in their derivation of the relationship between the bimoment
and the warping strain. In addition, the Wagner term within the finite strains and its corresponding stress
resultant-Wagner moment (Wagner, 1936) do not appear to have been included in the models based on
‘‘geometrically exact beam theory’’. The first Piola–Kirchhoff stress vector used in the ‘‘geometrically exact
beam theory’’ may imply that the Wagner moment is included in the stress resultants. However, it is known
that the strain measures corresponding to the Wagner moment is the second order twist which has not been
included in the existing ‘‘geometrically exact beam theory’’. Because of this, the constitutive relationship
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Fig. 2. Effects of Wagner strain terms and Wagner moment.
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between the stress resultant Wagner moment and the conjugate strain measure do not appear to have been
developed in the existing ‘‘geometrically exact beam theory’’ as well. Hence, it is difficult to use the existing
‘‘geometrically exact beam theory’’ to predict large torsional responses. For example, the beam elements of
the commercial finite element packages ABAQUS (2003) and ANSYS (2003) that are related to the ‘‘geo-
metrically exact beam theory’’ cannot correctly predict the large torsional response test results (Farwell and
Galambos, 1969) as shown in Fig. 2. Furthermore, the extension of the elastic model based on ‘‘geometri-
cally exact beam theory’’ to elasto-plastic analysis have more obstacles because it is difficult to establish an
accurate, unified and effective constitutive model that relates the strain measures or the deformations to the
stress resultants.

The weak form of the continuum equilibrium equations that are based on the virtual work principle in
terms of stresses and virtual strains is also often used for nonlinear analysis of beams (Bathe and Bolourchi,
1979; Kitipornchai and Chan, 1990; Dvorkin et al., 1988; Bild et al., 1992; Pi and Trahair, 1994; Ronagh
and Bradford, 1999; Chan and Gu, 2000). Compared with ‘‘geometrically exact beam theory’’, this method
has two advantages. Firstly, it is easy to incorporate some important terms in the expression for the finite
strains such as warping and Wagner terms and the corresponding stress resultants in the formulation that
do not appear in the models that are based on ‘‘geometrically exact beam theory’’. Secondly, because
constitutive models based on this method are usually expressed in the form of more routine stress–strain
relationships, it is much easier to extend these models from a nonlinear elastic analysis to a nonlinear elas-
to-plastic analysis. Four independent parameters in the formulation, viz. the three displacements of the
member axis and twist rotation of the cross-section, are often used in these models to describe the defor-
mations and strains. One of the drawbacks of formulations that use these four parameters is that approx-
imations often need to be made by introducing restrictions on the magnitudes of the displacements and
limiting the rotation to be small, so that the formulations can be facilitated readily. However, approxima-
tions or simplifications that are made in the earlier stages of the derivation may not be able to separate sig-
nificant rigid body motion from the real deformations and thus may produce over-stiff solution due to self
straining (Simo and Vu-Quoc, 1987; Kane et al., 1987; Crisfield, 1990; Banerjee and Lemak, 1991; Pi and
Trahair, 1994; Pi and Bradford, 2002).

The purpose of this paper is to take advantage of the merits of ‘‘geometric exact beam theory’’ and the
formulation of the continuum equilibrium equations in weak form in the development of a consistent the-
ory and of differential equations of equilibrium for the nonlinear analysis of members curved in space with
warping and Wagner effects.
2. Axis systems and kinematics

A body attached (material) right-handed curvilinear orthogonal axis system is used here to describe the
motion of a member curved in space during its deformation. In the undeformed configuration, the curvi-
linear orthogonal axis system is in the position oxys. The axis os passes through the centroids of the cross-
section of the undeformed curved member and the axes ox and oy coincide with the principal axes of the
cross-section, as shown in Fig. 3. It is worth pointing out that the centroidal axis os is generally a space
curve rather than a plane curve. A unit vector ps in the tangent direction of the axis os, and unit vectors
px and py in the direction of the axes ox and oy form a right-handed orthonormal basis. The unit vectors
px, py, ps are used as the fixed reference basis. They do not change with the deformation, but their directions
change from point to point along the member axis os.

After the deformation, the origin o displaces u,v,w to o* and the cross-sections (that are assumed to re-
main rigid in their planes and so do not distort) rotate through an angle /, and so the body attached cur-
vilinear orthogonal axis system moves and rotates to a new position o*x*y*s* as shown in Fig. 3. In the
deformed configuration, a unit vector qs is defined along the tangent direction of the axis o*s* of the axis
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system o*x*y*s*, and unit vectors qx and qy are defined along the principal axes o*x*, o*y* of the rotated
cross-section at o*. The unit vectors qx, qy, qs also form a orthonormal basis. They attach to the member
and move with the member during the deformation with the vector qs normal to the cross-section at all
times.

A fixed (space) right-handed rectangular coordinate system OXYZ is defined in space as also shown in
Fig. 3. The position of the undeformed and deformed member can be defined in the axis system OXYZ,
with unit vectors PX, PY, PZ in directions OX, OY and OZ forming a right-handed orthogonal basis.

Before the deformation, the position vector of the centroid o in the fixed axes OXYZ is r0 (Fig. 3), and so
the unit vector ps tangential to the centroidal axis os can be expressed in terms of the position vector r0 as
(Pi et al., 2003)
ps ¼
dr0
ds

ð1Þ
In general, the centroidal axis os of a member curved in space has an initial curvature j0 and an initial twist
js0, and the curvature j0 is not necessarily in the direction of either principal axis of the cross-section. In
this case, the curvature j0 can be resolved into components jx0 and jy0 about the unit vectors px and py (i.e.
about the axes ox and oy). The Frenet–Serret formulae in terms of basis vectors px, py, ps for members
curved in space in the undeformed configuration can then be written as (Pi et al., 2003)
dpx
ds

;
dpy
ds

;
dps
ds

� �
¼ px; py ; ps
� �

K0 ð2Þ
where the skew-symmetric matrix K0 for the initial curvatures and twist is given by
K0 ¼
0 �js0 jy0

js0 0 �jx0
�jy0 jx0 0

2
64

3
75 ð3Þ
In the deformed configuration, the position vector of the centroid o* in the fixed axis system OXYZ is r as
shown in Fig. 3, and so the vector qs tangential to the deformed centroidal axis o*s* can be expressed in
terms of the position vector r of the centroid o* as
qs ¼
dr

ds�
¼ 1

1þ �

dr

ds
ð4Þ
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where ds* = (1 + �)ds is used, with � being the longitudinal normal strain at the centroid. Because the dif-
ferentiation of the position vector is taken with respect to the deformed length s*, qs is a unit vector.

The position vector r of the centroid o* can be expressed as (Fig. 3)
r ¼ r0 þ upx þ vpy þ wps ð5Þ
Hence, Eqs. (2)–(5) can be used to obtain
qs ¼
1

1þ �

dr

ds
¼ 1

1þ �
½~u0px þ ~v0py þ ð1þ ~w0Þps	 ¼ û0px þ v̂0py þ ŵ0ps ð6Þ
where ~u0 
 u0 þ wjy0 � vjs0, ~v0 
 v0 � wjx0 þ ujs0, ~w0 
 w0 � ujy0 þ vjx0, ðÞ0 
 dðÞ=ds, û0 
 ~u0=ð1þ �Þ,
v̂0 
 ~v0=ð1þ �Þ, ŵ0 
 ð1þ ~w0Þ=ð1þ �Þ. Because qs is a unit vector, it follows from Eq. (6) that
ðû0Þ2 þ ðv̂0Þ2 þ ðŵ0Þ2 ¼ 1: ð7Þ
from which only two of û0, v̂0 and ŵ0 are independent.
In the deformed configuration, and in accordance with the Frenet–Serret formulae, the relationship be-

tween the derivatives of the basis vectors and the curvatures and twist can be written as (Pi et al., 2003)
dqx
ds�

;
dqy
ds�

;
dqs
ds�

� �
¼ 1

1þ �

dqx
ds

;
dqy
ds

;
dqs
ds

� �
¼ qx; qy ; qs
� �

K ð8Þ
where the skew-symmetric matrix K for the curvatures and twist after the deformation is given by
K ¼
0 �js jy
js 0 �jx
�jy jx 0

2
64

3
75 ð9Þ
where jx and jy are the curvatures about the unit vectors qx and qy, i.e. about the axes o*x* and o*y*
respectively, and js is the twist about the unit vector qs i.e. about the o*s* axis after deformation.
3. Rotations, curvatures and deformations

A rotation matrix R is often used to describe the relationship between the basis vectors px, py, ps in the
undeformed configuration and the basis vectors qx, qy, qs in the deformed configuration. The rotation ma-
trix for the special orthogonal rotation group SO(3) can be obtained as (Pi et al., 2003)
qi ¼ Rpi; i ¼ x; y; s ð10Þ

or collectively as
½qx; qy ; qs	 ¼ ½px; py ; ps	R ð11Þ
where the matrix R is given by
R ¼
Rxx Rxy Rxs
Ryx Ryy Rys
Rsx Rsy Rss

2
64

3
75 ð12Þ
with
Rxx ¼ ð1� kû02ÞC � kû0v̂0S; Rxy ¼ �ð1� kû02ÞS � kû0v̂0C; Rxs ¼ û0 ð13Þ



Y.-L. Pi et al. / International Journal of Solids and Structures 42 (2005) 3147–3169 3153
Ryx ¼ ð1� kv̂02ÞS � kû0v̂0C; Ryy ¼ ð1� kv̂02ÞC þ kû0v̂0S; Rys ¼ v̂0 ð14Þ

Rsx ¼ �û0C � v̂0S; Rsy ¼ û0S � v̂0C; Rss ¼ ŵ0 ð15Þ

and where C 
 cos/, S 
 sin/ and k 
 1=ð1þ ŵ0Þ.

The components of the rotation matrix R in Eqs. (13) and (15) are expressed by û, v̂, ŵ and /. It is noted
that the parameters û, v̂ and ŵ need to satisfy the condition given by Eq. (7). Hence, only two of them are
independent and the components of the rotation matrix R given in Eqs. (13) and (15) are expressed in fact
by three independent parameters. The components in Eqs. (13) and (15) become infinite only when
1þ ŵ0 ¼ 0 and/or 1 + � = 0, which do not occur for a real structure.

The rotation matrix given by Eq. (12) satisfies the orthogonality condition (Burn, 2001)
RRT ¼ RTR ¼ I ð16Þ
and the unimodular condition that
det R ¼ þ1 ð17Þ
where detR is the determinant of the matrix R. Hence, the matrix R belongs to the special orthogonal Lie
group for three dimensional rotation SO(3), for which the invariant requirement needed for the rigid body
rotation is satisfied.

Differentiating Eq. (11) with respect to s produces
dqx
ds

;
dqy
ds

;
dqs
ds

� �
¼ dpx

ds
;
dpy
ds

;
dps
ds

� �
Rþ px; py ; ps

� � dR
ds

ð18Þ
and substituting Eqs. (2), (11), (18) into Eq. (8), and using ds* = (1 + �) ds yields
ð1þ �ÞK ¼ RT dR

ds
þ RTK0R ð19Þ
It is worth pointing out that the second term RTK0R of Eq. (19) embodies the effects of the initial curvatures
and twist on the deformed curvatures and twist and leads to some significant terms in the finite strains
caused by interactions of the initial curvatures and twist with the finite rotation and extension. However,
this term appears to be simplified as K0 by some researchers.

Substituting Eqs. (12), (13), (15) into Eq. (19) leads to the curvatures jx and jy and the twist (Love, 1927)
js after the deformation as
jx ¼ û00S � v̂00C � kŵ00ðû0S � v̂0CÞ þ ½kð1� û02 � ŵ02ÞC � kû0v̂0S þ ŵ0C	jx0 þ ½kð1� v̂02 � ŵ02ÞS
�
�kû0v̂0C þ ŵ0S	jy0 � ðv̂0S þ û0CÞjs0

�
ð1þ �Þ�1 ð20Þ

jy ¼ û00C þ v̂00S � kŵ00ðû0C þ v̂0SÞ � ½kð1� û02 � ŵ02ÞS þ kû0v̂0C þ ŵ0S	jx0 þ ½kð1� v̂02 � ŵ02ÞC
�
þkû0v̂0S þ ŵ0C	jy0 � ðv̂0C � û0SÞjs0

�
ð1þ �Þ�1 ð21Þ

js ¼ ½/0 þ kðû00v̂0 � û0v̂00Þ þ û0jx0 þ v̂0jy0 þ ŵ0js0	ð1þ �Þ�1 ð22Þ

The position vector a0 of an arbitrary point P(x,y) on the cross-section of the curved member in the

undeformed configuration can be expressed as (Fig. 3)
a0 ¼ r0 þ xpx þ ypy ð23Þ
where r0 is the position vector of the centroid o in the fixed axes OXYZ.
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In the undeformed configuration, the initial gradient tensor F0 can be expressed as
F0 ¼
oa0

ox
;
oa0

oy
;
oa0

os

� �
ð24Þ
The position of the point P(x,y) in the deformed configuration is determined based on the following two
assumptions. Firstly, it is assumed that curved members are considered to satisfy the Bernoulli hypothesis
i.e. the cross-sectional plane remains plane and perpendicular to the member axis during the deformation,
while secondly, the total deformation of a point P is assumed to result from two successive motions: a
translation and a finite rotation of the cross-section, and a superimposed warping displacement along
the unit vector qs in the deformed configuration. The magnitude of this warping displacement is assumed
to be given by the product of two functions: the normalized section warping function x(x,y) and the change
of twist (js � js0). Under these two assumptions, the position vector a of the point P1, which is the position
of the point P after the deformation, can be expressed in terms of the basis vectors qx, qy, qs in Fig. 3 as
a ¼ rþ xqx þ yqy � xðx; yÞðjs � js0Þqs ð25Þ
in which r is the position vector of the centroid o* after the deformation in the fixed axis system OXYZ and
is given by Eq. (5).

In the deformed configuration, the deformation gradient tensor F can be expressed as
F ¼ oa

ox
;
oa

oy
;
oa

os

� �
¼ oa

ox
;
oa

oy
; ð1þ �Þ oa

os�

� �
ð26Þ
since ds* = (1 + �)ds.
4. Finite strains

The strain tensor can be expressed in terms of the initial and deformation gradient tensors as
�xx
1
2
cxy

1
2
cxs

1
2
cyx �yy

1
2
cys

1
2
csx

1
2
csy �ss

2
64

3
75 ¼ 1

2
FTF� FT

0F0

� �
ð27Þ
The components of the strain tensor given in Eq. (27) can then obtained by substituting Eqs. (23) and (25)
into Eq. (27) as
�xx ¼ �yy ¼ �xy ¼ �yx ¼ 0 ð28Þ

�ss ¼
1

2

oa

os
� oa
os

� oa0

os
� oa0
os

� �

¼ 1

2
½ð1þ �Þ2 � 1	 � x½jyð1þ �Þ � jy0	 þ yðjxð1þ �Þ � jx0Þ � xðjs � js0Þ0ð1þ �Þ þ 1

2
x2½j2

yð1þ �Þ2

� j2
y0	 þ

1

2
y2½j2

xð1þ �Þ2 � j2
x0	 þ

1

2
x2½js � js0	2ð1þ �Þ2 � xy½jxjyð1þ �Þ2 � jx0jy0	

þ xxjyðjs � js0Þð1þ �Þ2 � yxjxðjs � js0Þð1þ �Þ2 þ 1

2
ðx2 þ y2Þ½j2

s ð1þ �Þ2 � j2
s0	 ð29Þ

csy ¼ cys ¼
oa

oy
� oa
os

� oa0

oy
� oa0
os

� �
¼ x� oxðx; yÞ

oy


 �
ðjs � js0Þ ð30Þ
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and
csx ¼ cxs ¼
oa

ox
� oa
os

� oa0

ox
� oa0
os

� �
¼ � y þ oxðx; yÞ

ox


 �
ðjs � js0Þ ð31Þ
Substituting Eqs. (20)–(22) into Eq. (29), ignoring the effects of the third and higher order terms, the lon-
gitudinal normal strain �ss at the displaced point P1 can be expressed as
�ss ¼ ~w0 þ 1

2
~u0

2 þ 1

2
~v0

2 þ 1

2
~w02

� x ~u00C þ ~v00S � jx0S �
1

2
jx0~w

0S þ jy0 1� 1

2
~v02 þ 1

2
~w0


 �
C � 1

� �
� ð~v0C � ~u0SÞjs0

� �

þ y ~u00S � ~v00C þ jy0S þ
1

2
jy0~w

0S þ jx0 1� 1

2
~u02 þ 1

2
w0


 �
C � 1

� �
� ð~v0S þ ~u0CÞjs0

� �

� x /00 þ ~u00jx0 þ ~v00jy0 þ ~w00js0 þ
1

2
ð~u000~v0 � ~u0~v000Þ

� �
þ 1

2
ðx2 þ y2Þf/0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0g2

ð32Þ

where the approximation k ¼ 1=ð1þ ŵÞ ¼ 1=ð2þ ~w0Þ � 1=2 has been used.

Substituting Eq. (22) into Eqs. (31) and (30) leads to the shear strains csy and csx as
csy ¼ x� oxðx; yÞ
oy


 �
/0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0 þ

1

2
ð~u00~v0 � ~u0~v00Þ

� �
ð33Þ

csx ¼ � y þ oxðx; yÞ
ox


 �
/0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0 þ

1

2
ð~u00~v0 � ~u0~v00Þ

� �
ð34Þ
The warping function x(x,y) can be obtained by considering the Saint–Venant uniform torsion problem for
a prismatic bar, which results in the Laplace equation
r2x ¼ o2x
ox2

þ o2x
oy2

¼ 0 ð35Þ
and which may be solved by considering that the shear stresses ssx and ssy conjugate to the shear strains csy
and csx satisfy a traction-free boundary condition on the lateral surface. The solution for the warping func-
tion x(x,y) can be uniquely specified by using the following three additional orthogonality conditions
Z

A
xðx; yÞdA ¼

Z
A
xxðx; yÞdA ¼

Z
A
yxðx; yÞdA ¼ 0 ð36Þ
For thin-walled sections, additional assumptions can be made to simplify the solutions. For example, Vla-
sov�s hypothesis (Vlasov, 1961), that the shear deformations in the mid-line of a thin-walled plate are ex-
tremely small and can be neglected, can be used to obtain the warping function from Eq. (35) for a doubly
symmetric I-section as
xðx; yÞ ¼

xðy þ hÞ for the top flange

�xy for the web

xðy � hÞ for the bottom flange

8>><
>>: ð37Þ
where h is the distance between the flange centroids.
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5. Stresses and stress resultants

The stress vector r at the point P1 can be written as
r ¼ E� ð38Þ

where the stress vector is given by
r ¼ frss; ssy ; ssxgT ð39Þ

with rss being the longitudinal normal stress, and where ssy and ssx are the shear stresses due to uniform
torsion; the elastic modulus matrix E is given by
E ¼
E 0 0

0 G 0

0 0 G

2
64

3
75 ð40Þ
with E and G being the Young�s and shear moduli of elasticity respectively, and the strain vector e is given
by
� ¼ f�ss; csy ; csxg
T ð41Þ
with �ss, csy and csx being given by Eqs. (32)–(34), respectively.
The vector of stress resultants referred to the deformed axes o*x*y*s* acting on the cross-section can be

written as
R ¼ fR1;R2;R3;R4;R5;R6gT ¼ fN ;�My ;Mx;B;W ; TgT ¼
Z
A
CTrdA ð42Þ
where C is a 3 · 6 matrix and given by
C ¼

1 x y x x2 þ y2 0

0 0 0 0 0 x� oxðx;yÞ
oy

� �
0 0 0 0 0 � y þ oxðx;yÞ

ox

� �
2
6664

3
7775 ð43Þ
and where N is the axial compression, My is the bending moment about the axis o*y*, Mx is the bending
moment about the axis o*x*, B is the bimoment, W is the Wagner moment (Wagner, 1936), and T is the
torque due to uniform torsion, whence
N ¼
Z
A

rss dA ð44Þ

My ¼ �
Z
A

rssxdA ð45Þ

Mx ¼
Z
A

rssy dA ð46Þ

B ¼
Z
A

rssxdA ð47Þ

W ¼
Z
A

rssðx2 þ y2ÞdA ð48Þ
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and
T ¼
Z
A

x� oxðx; yÞ
oy


 �
ssy � y þ oxðx; yÞ

ox


 �
ssx

� �
dA ð49Þ
6. Nonlinear equilibrium equations

The nonlinear equilibrium equations for a member curved in space can be derived from the principle of
virtual work which requires that
dU ¼
Z
V
d�TrdV �

Z S

0

ðduTq qþ dhTmmeÞds�
X
k¼1;2

ðduTQkQk þ dhTMek
MekÞ ¼ 0 ð50Þ
for all admissible sets of infinitesimal virtual displacements {du,dv,dw,d/} and the corresponding virtual
strains de given by
d� ¼ fd�ss; dcsy ; dcsxg ð51Þ
where q and Qk(k = 1,2) are the external distributed and concentrated loads at both ends of the member
and are given by
q ¼ fqx; qy ; qsg
T and Qk ¼ fQxk;Qyk ;Qskg

T ðk ¼ 1; 2Þ ð52Þ
with qx, qy and qs being the distributed loads in the direction of the axes ox, oy and os while Qxk, Qyk and
Qsk are the concentrated loads in the direction of the axes ox, oy and os; and me and Mek(k = 1,2) are the
external distributed and concentrated moments at both ends of the member and are given by
me ¼ fmex;mey ;mesgT and Mek ¼ fM exk;M eyk;M eskgT ðk ¼ 1; 2Þ ð53Þ

with mex, mey and mes being the distributed moments about the axes ox, oy and os while Mexk, Meyk and
Mesk are the concentrated moments about the axes ox, oy and os.

The virtual longitudinal normal strain d�ss can be obtained by taking the variation of Eq. (32) as
d�ss ¼ ~v0js0 � ð1þ ~w0Þjy0
� �

duþ ~u0du0 þ ð1þ ~w0Þjx0 � ~u0js0½ 	dv
�
þ~v0dv0 þ ð~u0jy0 � ~v0jx0Þdwþ ð1þ ~w0Þdw0�
� x 1

2
ðSjx0 �Cjy0Þjx0 �Cðjy0~v0 þ js0Þjs0

� �
duþ 2Sjs0 du0 þCdu00

�

þ 1

2
ðCjy0 � Sjx0Þjy0 � Sj2

s0

� �
dv�Cð~v0jy0 þ 2js0Þdv0 þ Sdv00 þ ðCjx0 þ Sjy0Þjs0 þC~v0jx0jy0

� �
dw

þ1

2
ðCjy0 � Sjx0Þdw0 þ C~v00 �Cjx0 1þ 1

2
~w0


 �
� S~u00 � Sjy0 1þ 1

2
~w0


 �
� ðS~v0 þC~u0Þjs0

� �
d/

�

þ y � 1

2
ðCjy0 þ Sjx0Þjy0 þ Sj2

s0

� �
du�Cð~u0jx0 þ 2js0Þdu0 þ Sdu00

�

þ 1

2
ðCjx0 þ Sjy0Þjx0 þCð~u0jx0 þ js0Þjs0

� �
dv� 2Sjs0 dv0 �Cdv00

þ ðSjx0 �Cjy0Þjs0 �C~u0jx0jy0
� �

dwþ 1

2
ðCjx0 þ Sjy0Þdw0
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þ S~v00 � Sjx0 1þ 1

2
~w0


 �
þC~u00 þCjy0 1þ 1

2
~w0


 �
� ðC~v0 � S~u0Þjs0

� �
d/

�

�x
1

2
~u000js0 du�

1

2
~v000du0 þ jx0 �

1

2
~u0js0


 �
du00 þ 1

2
~v0du000 þ 1

2
~v000js0 dv

�
þ 1

2
~u000dv0

þ jy0 �
1

2
~v0js0


 �
dv00 � 1

2
~u0dv000 � 1

2
ð~u000jx0 þ ~v000jy0Þdwþ js0 þ

1

2
ð~v0jy0 þ ~u0jx0Þ

� �
dw00 þ d/00

�
þ ðx2 þ y2Þ /0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0

� �
jx0 du0 þ jy0 dv0 þ js0 dw0 þ d/0� �

ð54Þ
while the virtual uniform torsion shear strains dcsy and dcsx can be obtained by taking the variation of Eqs.
(33) and (34) as
dcsy ¼ x� oxðx; yÞ
oy


 �
1

2
~u00js0duþ jx0 �

1

2
~v00 � 1

2
~u0js0


 �
du0 þ 1

2
~v0 du00 þ 1

2
~v00js0 dv

�

þ jy0 þ
1

2
~u00 � 1

2
~v0js0


 �
dv0 � 1

2
~u0 dv00� 1

2
~u00jx0 þ ~v00jy0
� �

dw

þ js0 þ
1

2
~v0jy0 þ ~u0jx0
� �� �

dw0 þ d/0
�

ð55Þ
and
dcsx ¼ � y þ oxðx; yÞ
ox


 �
1

2
~u00js0duþ jx0 �

1

2
~v00 � 1

2
~u0js0


 �
du0 þ 1

2
~v0 du00 þ 1

2
~v00js0 dv

�

þ jy0 þ
1

2
~u00 � 1

2
~v0js0


 �
dv0 � 1

2
~u0 dv00� 1

2
~u00jx0 þ ~v00jy0
� �

dw

þ js0 þ
1

2
~v0jy0 þ ~u0jx0
� �� �

dw0 þ d/0
�

ð56Þ
If the external loads are assumed to be acting at the centroids,
duq ¼ duQ ¼ fdu; dv; dwgT and dhm ¼ dhM ¼ f�d~v0; d~u0; d/gT ð57Þ
By substituting Eqs. (54)–(57) into Eq. (50) and considering Eq. (42), the virtual work given by Eq. (50) can
be expressed in terms of stress resultants, external loads, and displacements and their derivatives. Then,
integrating Eq. (50) by parts allows the differential equilibrium equations for members curved in space
to be separated as
N ½~v0js0 � ð1þ ~w0Þjy0	 � ½N~u0	0 �Mx
1

2
ðCjy0 þ Sjx0Þjy0 þ Sj2

s0

� �

þ ½MxCð~u0jx0 þ 2js0Þ	0 þ ½MxS	00 þMy
1

2
ðSjx0 � Cjy0Þjx0 � Cðjy0~v0 þ js0Þjs0

� �

� 2½MySjs0	0 þ ½MyC	00 �
1

2
B~u000js0 �

1

2
½B~v000	0 � B jx0 �

1

2
~u0js0


 �� �00
þ 1

2
½B~v0	000 � 1

2
T~u00js0

þ T jx0 �
1

2
~v00 � 1

2
~u0js0


 �� �0
� 1

2
½T~v0	00 � ½W ð/0 þ ~u0jx0 þ ~v0jy0 þ ~wjs0Þjx0	0 ¼ qx � m0

ey ð58Þ
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for bending about the axis oy,
N ½ð1þ ~w0Þjx0 � ~u0js0	 � ½N~v0	0 þMx
1

2
Cjx0 þ Sjy0
� �

jx0 þ Cð~u0jx0 þ js0Þjs0
� �

þ 2½MxSjs0	0

� ½MxC	00 þMy
1

2
Cjy0 � Sjx0
� �

jy0 � Sj2
s0

� �
þ ½MyCð~v0jy0 þ 2js0Þ	0 þ ½MyS	00 �

1

2
B~v000js0

þ 1

2
½B~u000	0 � B jy0 �

1

2
~v0js0


 �� �00
� 1

2
½B~u0	000 � 1

2
T~v00js0 þ T jy0 þ

1

2
~u00 � 1

2
~v0js0


 �� �0

þ 1

2
½T~u0	00 � ½W ð/0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0Þjy0	0 ¼ qy þ m0

ex ð59Þ
for bending about the axis ox,
Nð~u0jy0 � ~v0jx0Þ � ½Nð1þ ~w0Þ	0 þMx½ðSjx0 � Cjy0Þjs0 � C~u0jx0jy0	 �
1

2
½Mxðjy0S þ jx0CÞ	0

þMy ½ðCjx0 þ Sjy0Þjs0 þ C~v0jx0jy0	 �
1

2
½Myðjy0C � jx0SÞ	0 þ

1

2
B½~u000jx0 þ ~v000jy0	 � ½Bðjs0

þ 1

2
~v0jy0 þ

1

2
~u0jx0Þ	00 þ

1

2
T ð~u00jx0 þ ~v00jy0Þ þ T js0 þ

1

2
~v0jy0 þ

1

2
~u0jx0


 �� �0

� ½W ð/0 þ ~u0jx0 þ ~v0jy0 þ ~wjs0Þjs0	0 ¼ qs þ meyjy0 þ mexjx0 ð60Þ
for axial compression in the direction of the axis os, and
Mx ~u00C þ ~v00S þ jy0C 1þ 1

2
~w0


 �
� jx0S 1þ 1

2
~w0


 �
� ð~v0C � ~u0SÞjs0

� �

�My ~u00S � ~v00C þ jy0S 1þ 1

2
~w0


 �
þ jx0C 1þ 1

2
~w0


 �
þ ð~v0S þ ~u0CÞjs0

� �
� B00 þ T 0

� W ð/0 þ ~u0jx0 þ ~v0jy0 þ ~wjs0Þ
� �0 ¼ mes ð61Þ
for torsion about the axis os.
The boundary conditions can be stated as
N~u0 �MxC ~u0jx0 þ 2js0ð Þ � ½MxS	0 þ 2MySjs0 � ½MyC	0 þ
1

2
B~v000 þ B jx0 �

1

2
~u0js0


 �� �0

� 1

2
B~v0½ 	00 þ 1

2
T~v00 � T jx0 �

1

2
~u0js0


 �
þ 1

2
T~v0½ 	0 þ W /0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0

� �
jx0

¼ Qx þ mey or du ¼ 0; ð62Þ

MyC þMxS þ
1

2
B~v0½ 	0 � B jx0 �

1

2
~u0js0


 �
þ 1

2
T~v0 ¼ M ey or du0 ¼ 0 ð63Þ
and
� 1

2
B~v0 ¼ 0 or du00 ¼ 0 ð64Þ
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for bending about the axis oy,
N~u0 � 2MxSjs0 þ ½MxC	0 �MyC ~v0jy0 þ 2js0
� �

� ½MyS	0 �
1

2
B~v000 þ Bðjy0 �

1

2
~u0js0Þ

� �0
þ 1

2
B~u0½ 	00

� 1

2
T~u00 � T jy0 �

1

2
~v0js0


 �
� 1

2
T~u0½ 	0 þ W /0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0

� �
jy0

¼ Qy � mex or dv ¼ 0; ð65Þ

MyS �MxC � B jy0 �
1

2
~v0js0


 �
� 1

2
B~u0½ 	0 þ 1

2
T~u0 ¼ �M ex or dv0 ¼ 0 ð66Þ
and
1

2
B~u0 ¼ 0 or dv00 ¼ 0 ð67Þ
for bending about the axis ox,
N þ 1

2
Mx½jy0S þ jx0C	 þ

1

2
My ½jy0C � jx0S	 þ B js0 þ

1

2
~v0jy0 þ ~u0jx0
� �� �� �0

� T js0 þ
1

2
~v0jy0 þ ~u0jx0
� �� �

þ W /0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0
� �

js0

¼ Qes þM eyjx0 �M exjy0 or dw ¼ 0 ð68Þ

and
B js0 þ
1

2
~u0jx0 þ ~v0jy0
� �� �

¼ 0 or dw0 ¼ 0 ð69Þ
for axial compression in the direction of the axis os, and
W /0 þ ~u0jx0 þ ~v0jy0 þ ~w0js0
� �

þ B0 � T ¼ M es or d/ ¼ 0 ð70Þ

B ¼ 0 or d/0 ¼ 0 ð71Þ

for torsion about the axis os.

It is noted that the terms containing Wagner moment W appear in all the differential equilibrium equa-
tions and boundary conditions for bending deformations in the axes ox and oy, axial deformations in the
axis os and torsional deformations about the axis os.
7. Applications

7.1. Beams curved in plan

The nonlinear differential equations of equilibrium can be applied directly to various problems and can
also be used with a number of numerical methods such as the finite difference, finite element, finite strip,
and Hermite methods. For example, they can be applied to the nonlinear analysis of beams curved in plan.
For beams curved in plan without initial twist, js0 = jx0 = 0. When the effect of the second order curvature
j2
y0 is ignored, Eqs. (58)–(61) reduce to the nonlinear differential equilibrium equations of beams curved in
plan that take the form
�Nð1þ ~w0Þjy0 � ½Nðu0 þwjy0Þ	0 þ ½MxS	00 �
1

2
MxCj2

y0 þ ½MyC	00 �
1

2
½Bv000	0 þ 1

2
½Bv0	000 � 1

2
½Tv00	0 � 1

2
½Tv0	00

¼ qx �m0
ey ð72Þ
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for bending about the axis oy,
� ½Nv0	0 � ½MxC	00 þ ½MyS	00 þ
1

2
MyCj2

y0 þ ðMyC~v
0jy0Þ0 þ

1

2
½Bðu000 þw00jy0Þ	0 � ½Bjy0	00 �

1

2
½Bðu0 þ wjy0Þ	000

þ 1

2
½T ðu00 þ w0jy0Þ	0 þ ½Tjy0	0 þ

1

2
½T ðu0 þ wjy0Þ	00 � ½W ð/0 þ v0jy0Þjy0	0 ¼ qy þ m0

ex ð73Þ
for bending about the axis ox,
N ½ðu0 þ wjy0Þjy0	 � N 0 � 1

2
½Mxjy0S	0 �

1

2
½Myjy0C	0 þ

1

2
Bv000jy0 �

1

2
½Bv0jy0	00 þ

1

2
Tv00jy0 þ

1

2
½Tv0jy0	0

¼ qs þ meyjy0 ð74Þ
for axial compression in the direction of the axis os, and
Mx u00 þ 1

2
w0jy0


 �
Cþ v00Sþ jy0C

� �
�My u00 þ 1

2
w0jy0


 �
S � v00C þ jy0S

� �
�B00 þ T 0 � W ð/0 þ v0jy0Þ

� �0
¼ mes ð75Þ
for torsion about the axis os. Eqs. (72) and (75) are consistent with those of Pi and Trahair (1997) and close
to those of Nakai and Yoo (1988).

A steel I-section beam curved in plan (Fig. 4) with a constant radius that was considered by Fukumoto
and Nishida (1981) has been analysed. The curved beam is simply supported at both ends (in plane
v(0) = v(S) = w(0) = 0 and out-of-plane u(0) = u(S) = /(0) = /(S) = 0) and subjected to equal end
moments.

The cross-section has an overall height D = 250mm, a flange width B = 100mm, a flange thickness
tf = 8mm and a web thickness tw = 5.54mm. The material properties are Young�s modulus
E = 2.06 · 105MPa, Poisson�s ratio m = 0.3, and the yield stress ry = 235MPa. A linear elastic stress–strain
relationship was used in the analysis. The radius of the curved beam is R = 32.24m and its length is S =
2.579m, so that the include angle is H = 4.583�, and the ratio of the curved beam offset to its chord length
is 1/100.

Variations of the central twist rotation / and the dimensionless central in-plane and out-of-plane dis-
placements v/D, u/B with the dimensionless end moments M/Myz are shown in Fig. 5. Also shown in
Fig. 5 are the numerical results of Fukumoto and Nishida (1981) obtained by the transfer matrix method.
The results obtained from Eqs. (72) to (75) can be seen to be quite close to those of Fukumoto and Nishida.

7.2. Flexural–torsional buckling of circular arches

7.2.1. Doubly symmetric arches in uniform compression

The nonlinear differential equations of equilibrium given by Eqs. (58)–(61) can also be applied to
the investigation of the flexural–torsional buckling analysis of circular arches. For a circular arch without
y

o

x

s

RΘ

S

Mx
Mx

Fig. 4. Beam curved in plan.
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3162 Y.-L. Pi et al. / International Journal of Solids and Structures 42 (2005) 3147–3169
initial twist, the initial curvature jy0 about the axis oy and the initial twist js0 are is equal to zero and the
curvature jx0 about the axis ox (i.e. in the plane oys as shown in Figs. 3 and 6) is negative, since it is in the
positive direction of the axis oy. Hence, the magnitude R of the radius of the arch is given by
R ¼ � 1

jx0
ð76Þ
When the arch is subjected to in-plane loads, it may suddenly bifurcate from its prebuckled equilibrium
position {0,v,w, 0} by deflecting laterally ub and twisting /b to a new buckled equilibrium position
{ub,v,w,/b} under the constant conservative loads.
φ

x

y

u o

q

θ θ

(b) Arch in uniform bending(a) Arch in uniform compression

M M

Prebuckling position

Buckling position

(c) Flexural-torsional buckling (d) Lateral restraints (plan)

Q=qR Q

R

x*

y*

o* s*

s

Fig. 6. Flexural–torsional buckling of arches in uniform compression or bending.
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In buckling analysis, it is sufficient to assume the prebuckling behaviour of an arch is linear and so only
the stress resultants corresponding to the prebuckling in-plane deformation exist. The stress resultants de-
fined by Eqs. (44), (46) and (48) can then be linearised as
N ¼
Z
A

rss dA ð77Þ

Mx ¼
Z
A

rssy dA ð78Þ
and
W ¼
Z
A

rssðx2 þ y2ÞdA ¼ EIpðw0 þ vjx0Þ ¼
Ip
A
N ¼ r20N ð79Þ
where A is the area of the cross-section, Ix is the second moment of area about the major principal axis of
the cross-section, Ip is the polar moment of area of the cross-section and which are defined by
A ¼
Z
A
dA; Ix ¼

Z
A
y2 dA; Ip ¼

Z
A
ðx2 þ y2ÞdA ð80Þ
Because the twist rotation /b of the cross-section is small during flexural–torsional buckling, it is sensible to
assume that sin/b � /b and cos/b � 1. The stress resultants corresponding to the buckling displacements
ub and /b can also obtained from Eqs. (45), (47) and (49) as
My ¼ �
Z
A

rssxdA ¼ EIyðu00b � /bjx0Þ ¼ EIyðu00b þ /b=RÞ ð81Þ

B ¼
Z
A

rssxdA ¼ �EIwð/00
b þ u00bjx0Þ ¼ �EIwð/00

b � u00b=RÞ ð82Þ
and
T ¼
Z
A

x� ox
oy


 �
ssy � y þ ox

ox


 �
ssx

� �
dA ¼ �GJð/0

b þ u0bjx0Þ ¼ �GJð/0
b � u0b=RÞ ð83Þ
A primary uniform prebuckling compression force Qs = �N in a circular arch is produced by a radial load
qy = Qz/R uniformly distributed around the arch (Fig. 6(a)). In this case, the in-plane bending moment
Mx = 0. The differential equations of equilibrium for flexural–torsional buckling of an arch in uniform
compression can also be obtained by substituting Eqs. (79)–(83) into Eqs. (58) and (61) and considering
Mx = 0 as
fQsu0bg
0 � fr20Qsð/

0
b � u0b=RÞ=Rg

0 þ fEIyðu00b þ /b=RÞg
00 � fEIwð/00

b � u00b=RÞ=Rg
00

þ fGJð/0
b � u0b=RÞ=Rg

0 ¼ 0 ð84Þ

fr20Qsð/
0
b � u0b=RÞg

0 þ EIyðu00b þ /b=RÞ=Rþ fEIwð/00
b � u00b=RÞg

00 � fGJð/0
b � u0b=RÞg

0 ¼ 0 ð85Þ

When the arch is pin-ended out-of-plane, its nth mode buckled shape (Fig. 6(a)) can be defined by
ub
d
¼ /b

h
¼ sin

nps
S

ð86Þ
where d and h are the maximum lateral displacement and twist angle and which satisfies the kinematical
boundary conditions ub(0) = ub(S) = 0 and /b(0) = /b(S) = 0, and the static boundary conditions
EIyu00bð0Þ ¼ EIyu00bðSÞ ¼ 0 and EIw/00

bð0Þ ¼ EIw/00
bðSÞ ¼ 0.
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Substituting Eq. (86) into Eqs. (84) and (85) leads to the homogeneous algebraic equations
k11 k12
k21 k22

� �
d

h

� �
¼

0

0

� �
ð87Þ
with
k11 ¼ 1þ a2nb2n � 1þ a2nb2n
Nyn

Nsn


 �
Qs
Nyn

� �
Nyn ð88Þ

k12 ¼ k21 ¼ � an
bn

þ anbn �
Nyn

Nsn

Qs
Nyn

� �
Mnys ð89Þ

k22 ¼ 1þ a
2
n

b2n
� Nyn

Nsn

Qs
Nyn

( )
r20Nsn ð90Þ
where
an ¼
S
npR

; bn ¼
npMysn

NynS
ð91Þ

Mysn ¼ r20NynNsn; Nyn ¼
EIyðnpÞ2

S2
; Nsn ¼

1

r20
GJ þ EIwðnpÞ

2

S2

 !
ð92Þ
Solving Eq. (87) in conjunction with Eqs. (88) and (90) gives the buckling compressive load Qs as
Qs
Nyn

¼ 1

2
1þ a

2
n

b2n

 !
Nsn

Nyn
þ 1

2
ð1� a2nÞ

2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ a

2
n

b2n

 !
Nsn

Nyn
þ 1

2
ð1� a2nÞ

2

( )2

� ð1� a2nÞ
2 Nsn

Nyn

vuut ð93Þ
which is the same as that of Pi and Bradford (2002), close to that obtained by Trahair and Bradford (1998),
but differs from that obtained by Vlasov (1961). It has been pointed out by Trahair and Bradford (1998)
and Pi and Bradford (2002) that Vlasov�s result (1961) for the flexural–torsional buckling load of a pin-
ended doubly symmetric arch in uniform compression is incorrect.

It is worth pointing out that the terms �fr20Qsð/
0
b � u0b=RÞ=Rg

0 in Eq. (84) and fr20Qsð/
0
b � u0b=RÞg

0 in Eq.
(85) are those corresponding to the Wagner moment given by Eq. (79). The solution without these terms
(Papangelis and Trahair, 1987) overestimates the flexural–torsional buckling load.

7.2.2. Doubly symmetric arches in uniform bending

An arch that is simply supported in its plane of loading subjected to two equal and opposite end mo-
ments is primarily in uniform bending (Fig. 6(b)). It is well known that in the classical flexural–torsional
buckling analysis, the effects of prebuckling in-plane deformations on the flexural–torsional buckling are
usually ignored (Timoshenko and Gere, 1961; Vlasov, 1961; Trahair and Bradford, 1998), and that the flex-
ural–torsional buckling moment of beams under uniform bending without the effects of the prebuckling in-
plane deformations are widely used in a number of steel structure design codes such as American Institute
of Steel Construction (2000), British Standards Institution (1998), and Standards Australia (1998). Hence,
the flexural–torsional buckling of arches under uniform bending without the effects of the prebuckling in-
plane deformations is investigated in this section. In this case, substituting the linearised stress resultants
My, B and T, given by Eqs. (81)–(83) into Eqs. (58) and (61) and considering Mx =M and N = 0 leads
to the following differential equations of equilibrium for flexural–torsional buckling of an arch in uniform
bending
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fMx/bg
00 � fMxu0b=Rg

0 þ fEIyðu00b þ /b=RÞg
00 � fEIwð/00

b � u00b=RÞ=Rg
00 þ fGJð/0

b � u0b=RÞ=Rg
0

¼ 0 ð94Þ

Mxðu00b þ /b=RÞ þ EIyðu00b þ /b=RÞ=Rþ fEIwð/00
b � u00b=RÞg

00 � fGJð/0
b � u0b=RÞg

0 ¼ 0 ð95Þ

When the arch is pin-ended out-of-plane, its nth mode buckling shape can also be defined by Eq. (86).
Substituting Eq. (86) into Eqs. (94) and (95) leads to Eq. (87), but with
k11 ¼ 1þ a2nb2n þ anbn
Mx

Mysn


 �
Nyn ð96Þ

k12 ¼ k21 ¼ � an
bn

þ anbn þ
Mx

Mysn


 �
Mysn ð97Þ

k22 ¼ 1þ a
2
n

b2n
þ an
bn

Mx

Mysn

 !
r20Nsn ð98Þ
As for the case of arches under uniform compression, the buckling moment Mx is obtained as
Mx

Mysn
¼ � an

2
bn þ

1

bn


 �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n
4

bn þ
1

bn


 �2

þ ð1� a2nÞ

s
ð99Þ
which is the same as those obtained by Timoshenko and Gere (1961) and Vlasov (1961).
When the effects of prebuckling in-plane deformations on the flexural–torsional buckling of arches under

uniform bending are considered, the terms containing the in-plane deformations in Eqs. (58) and (61) need
to be considered. The in-plane curvature ~v00 produced by prebuckling in-plane deformations can be ob-
tained by linearising the bending moment Mx due to prebuckling in-plane deformations given by Eq.
(78) as
Mx ¼
Z
A

rssy dA ¼
Z
A
E�ssy dA ¼ �~v00EIx ð100Þ
from which
~v00 ¼ �Mx

EIx
ð101Þ
In this case, the coefficients k11, k12, k21, and k22 in the homogeneous algebraic equations (87) can be ob-
tained as
k11 ¼ 1þ a2nb2n þ anbn 1� b2n
� � Mx

Mysn

� �
Nyn ð102Þ

k12 ¼ � an
bn

þ anbn þ 1� b2n
� � Mx

Mysn

� �
Mysn ð103Þ

k21 ¼ � an
bn

þ anbn þ 1� Iy
Ix


 �
Mx

Mysn

� �
Mysn ð104Þ

k22 ¼ 1þ a
2
n

b2n
þ an
bn

1� Iy
Ix


 �
Mx

Mysn

" #
r20Nsn ð105Þ
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In the same way as for the case of arches under uniform bending without effects of prebuckling in-plane
deformations, the buckling moment Mx is obtained as
Mx

Mysn
¼

�D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 4ð1� Iy=IxÞð1� b2nÞð1� a2nÞ

q
2ð1� Iy=IxÞð1� b2nÞ

ð106Þ
with D ¼ anbnð1� Iy=IxÞ þ an=bnð1� b2nÞ, which is consistent with those obtained by Vacharajittiphan and
Trahair (1975), Hirashima et al. (1979) and Pi et al. (1995).

7.3. Nonlinear behaviour of members doubly-curved in space

The nonlinear elastic behaviour of a pin-ended member curved in space that is subjected to a central ver-
tical load has been analysed using a finite spatially-curved beam element model that has been developed by
authors elsewhere (Pi et al., 2003) on the basis of the nonlinear differential equations of equilibrium given
by Eqs. (58)–(61). The dimensions of the cross-section and material properties of the member are the same
as those of the beam given in Section 7.1. The length of the member is S = 2m. The centroidal axis of the
member is a space curve and its initial curvatures about both the principal axes ox and oy are jx0 = 0.43633
and jy0 = 0.008727. For comparison, a pin-ended arch, a pin-ended beam curved in plan, and a simply sup-
ported beam curved in plan with the same cross-section and material properties, the same length and the
same boundary and load conditions were also investigated. The curvature of the beam curved in plan is
jy0 = 0.008727 which corresponds to an included angle H = 1� while the curvature of the arch is
jx0 = 0.43633 which corresponds to an included angle H = 50�. In the analysis, to trigger the three dimen-
sional response of the arch, very small initial lateral load of 0.001 kN was conventionally applied to the
crown of the arch.

Variations of the absolute value of the central twist rotation j/jwith the central vertical load are shown
in Fig. 7. It can be seen that the behaviour of the member curved in space is very different from those of the
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Fig. 7. Nonlinear behaviour of members curved in space.
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arch and beams curved in plan. There is no twist rotation for the arch until an identifiable buckling load is
reached while the twist rotation is a primary deformation for the beam curved in plan. Because the included
angle H = 1� is small, the behaviour of the simply supported beam curved in plan is similar to a simply
supported straight beam with initial lateral imperfections. The behaviour of the pin-ended beam curved
in plan is similar to that of its simply supported counterpart when the deformations are small. However,
its response is much stiffer when the deformations are large because the induced tension and Wagner mo-
ment in the pin-ended beam curved in plan increase rapidly with an increase of the large deformations. The
twist rotation is also a primary deformation for the member curved in space, and it can be seen that it be-
comes nonlinear very early and the nonlinear behaviour becomes significant as the deformations further
increase.
8. Concluding remarks

A consistent nonlinear theory for the analysis of members curved in space with warping has been pre-
sented in this paper. The merits of the ‘‘geometrically exact beam theory’’ and the weak form formulation
have been combined in the development. A rotation matrix of the special rotation group that satisfies
orthogonality conditions was used in the derivations of deformed curvatures, position vectors, and nonlin-
ear strains. Nonlinear differential equations of equilibrium for members curved in space were then estab-
lished based on the principle of virtual work. It has been found that to predict the nonlinear behaviour
of members curved in space, the bimoment and Wagner moment stress resultants and their conjugate finite
strains have to be included in the nonlinear differential equations of equilibrium.

The nonlinear differential equations of equilibrium can be applied directly to various problems and can
also be used with a number of numerical methods such as the finite difference, finite element, finite strip,
and Hermite methods. They can be used for large deformation analysis of curved members that are sub-
jected to axial compression, biaxial bending, uniform and nonuniform torsion and their combined actions.
Applications of the nonlinear differential equations of equilibrium for the analyses of the nonlinear behav-
iour of beams curved in plan, the flexural–torsional buckling analysis of arches and the nonlinear behaviour
of members curved in space have been demonstrated, and the results for curved beams and for arches were
shown to agree with other studies. These comparisons with existing analytical and numerical results indi-
cate that the nonlinear differential equations of equilibrium for members curved in space can provide reli-
able solutions for a number of problems.
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